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Thermodynamics and the glass transition in model energy landscapes
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We determine the liquid-state thermodynamics for a model energy landscape corresponding to soft spheres
with a mean-field attraction. We consider two approximations, in which the distribution of potential energy
minima is either Gaussian or binomial, and for each we calculate the liquid spinodal, binodal, and “effective”
glass transition locus. The resulting models provide a unified description of the liquid state across the complete
range from low-temperature glassiness to high-temperature instability with respect to the vapor phase.
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I. INTRODUCTION scape in this kinetic-thermodynamic connect{@®-23. In

the present work, we take a theoretical approach and exam-

~ The glassy state is ubiquitous in nature; it is also presen . o implications of a model energy landscape on the
in many of the plastics and optical devices that we use andp»qe pehavior of the liquid, including the glass transition.

an important component of new technologies, from pharmaryis model has been formulated in previous investigations
ceuucal; to metalllc_ alloygl. 2]. Nonethg!ess, the fundamen_- 24,25 and employs a system of spherically symmetric par-
tal physics underlying the glass transition remains an activ cles, interacting with soft repulsive and mean-field attrac-

area of researc[8]. The basic phenomenology of glass for- tive forces. Using this idealized system, we demonstrate the

mation is familiar: a liquid is supercooled fast enough 10.,hhection between the glass transition and macroscopic
bypass crystallization, and eventually reaches a kineti
bottleneck with a sudden albeit continuous transition to

solidlike state[4]. Strictly speaking, this transition is kinetic

in nature, and in practice the gmpirical glass transitipn teMyatistical characterization of landscape featuile$. Rigor-
perature depends on the cooling rate employed. It is there, 5 system's energy landscape is its multidimensional
fore somewhat surprising that the kinetics of deeply supery,ieiial energy hypersurface as a function of its configura-
cooled I|qU|d§ appear to be tightly linked W't.h thelr_ tional degrees of freedom. The exponentially numerous local
t_hermodynam|cs.. The releyanpe c_)f a thermodynan_mc desc_r'génergy minima in an energy landscape, called inherent struc-
tion of supercooling and vitrification phenomena is a major. ures(1S), allow an exact partitioning of configuration space

open question and is the subject of much current researGflis the basins surrounding thefi7]. At a given tempera-

[5-13. The relationship between kinetics and thermodynam; re and densit¢or pressure the svstem samples a deaen-
ics is exemplified by an equation proposed by Adam anc{au ityor p ur: ¥ b g

; ) rate number of inherent structurd®s(T,p), which make
Gibbs almost 40 years ada4): an entropic contribution to the total free energy, also called
the configurational entropyB. =kg In 5. Although without
=1 exp(—), (1) rigorous theoretical justification, one can substitute the
TS landscape-defined configurational entropy into Elg, and

. - L the resulting predictions for kinetic constants have been
wherer is a characteristic relaxation timé,and r, are con-

. is th lled p shown in computer simulations to fare quite wglB—21.
stants,T is temperature, an& is the so-called configura- gy nerimentally, on the other hand, the configurational en-
tional entropy of the system. In the original derivatich,

f h b p | 'I bItropy used in the Adam-Gibbs equation is often the excess
stems from the number of structural arrangements availablg, oy that is to say the supercooled liquid's entropy minus
to the liquid's constituent molecules. Though work remainsy, .« of the stable crystal at the same conditiobs]. The

to be ?}one in pllacing Jheh Adam-(iibéﬁlAG) equation on g hiraction removes the entropic contribution due to vibra-
firmer theoretical ground, the remarkable performance of Egyina modes associated with the liquid's configurations. The

(1.). for a range of ;upercooled substantes] proyldes M- |andscape configurational and excess entropies coincide

pirical support for its use on at least a pragmanc basis. when the vibrational modes of the liquid and crystal around
The energy landscape approdd6,17), which focuses on their respective energy minima are equal.

the topology of a system’s potential energy function, has \,,ch attention has been given to the behaviorSpfin

proved usefullin i_nvestigating thg Iink between kinetics _anddeeply supercooled liquids, with a particular focus on

thermodynamics in supercooled liquids. Important past simuy pether or not the configurational entropy reaches zero at

lation work has demonstrated the role of the energy Ia”dfinite temperaturé24,26-30. In terms of the landscape, the
vanishing ofS. implies that the system has only a single,
low-energy amorphous configuration available to[26].
*Email: shell@princeton.edu This fact, coupled with the corresponding behavior of @9.
"Email: pdebene@princeton.edu at such a point, suggests complete structural arreSt=0,

‘fhermodynamics in the supercooled region of the phase dia-

The basis of the energy landscape formalism lies in the
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and has since come to be called an ideal glass transitiominimizes this expression, is the average inherent structure
Contrary to the familiar experimental glass transition, thisenergy sampled by the system. The functiensand a,
hypothetical phenomenon is thermodynamic, occurring at anake the rigorous connection with landscape properties,
well-defined temperatur@,c. The ideal glass transition has and are termed the basin enumeration function and vibra-
emerged as an interesting theoretical construct in spin glag®nal free energy, respectively. In particular, the quantity
[31,32, liquid [33-33, and protein36,37 models, but ow- S.=NKkgo(¢',p) is the total configurational entropy. For a
ing to the antecedence of the real, kinetic glass transition, isystem ofN structureless particles, these functions are de-
has never been experimentally observed. fined by

The ideal glass transition is often associated with the so-
called Kauzmann pointT, at which the excess entropy ds(¢) = C exNo]dg, (33
reaches zer$26,38. Walter Kauzmanr39] observed that
fpr a number of supstanqes the entropy of the s_upercooled e—BNavib:A—dN<f e‘ﬁ[U“N)‘Uk]drN> 3b)
liquid decreases quite rapidly upon cooling and, with reason- r '
able extrapolation, appears to become less than that of the ¢
stable crystal at a finite temperature. If this trend were tovhere S=1/kgT, d is dimensionality,A is the thermal de
continue to absolute zero, the liquid would attain a negativéBroglie wavelengthl is the potential energy, and' are the
entropy, in violation of the third law of thermodynamics. atomic coordinates. Here, the basin enumeration function re-
Experimentally the glass transition intervenes abdye  lates directly to the energy distribution of inherent structures:
avoiding this supposed catastrod but the unsettling im-  d{;s(¢) gives the number of minima with per-particle en-
plications of the behavior leading up to the Kauzmann pointrgy ¢+d¢/2, andC is a constant which has no bearing on
have led to théperhaps unfoundgdbelief that an ideal glass thermodynamics. For the supercooled liquid and glass, one
transition exists neally to ensure thermodynamic consis- must exclude any crystalline configurations from the count-
tency. It is now understood that Kauzmann points can and ding embodied in();s. Furthermorea,,(T, ¢,p) is the aver-
exist in several substances without an accompanying ideage free energy of basins of depghin Eq. (3b), the average
glass transition or any violation of the third I§&9]. On the s restricted to minima of energy and the integral for a
other hand, theoretical considerations argue against the pogarticular minimumk, of energyU,, is performed over its
sibility of vanishing configurational entropy at finite tem- basin’s configuration spadg,.
perature[26], making the ideal glass transition an unrealistic ~ Careful attention must be paid to the determinatiompqf
feature of liquids. the equilibrium inherent structure enerf4]. The particular

We employ a model energy landscaj24,25 and inves- issue at hand is whether or not the system reaches its mini-
tigate both its kinetic and thermodynamic properties. Themum amorphous energymin(p), at finite temperature. Pre-
model entails representative parameters which approximatumably only a single amorphous configuration is available
Lennard-Jones-type systems, and gives a realistic descriptiat this energy, which implies a simultaneous vanishing of the
of simple liquids at low temperatures. We examine twoconfigurational entropy; in other wordsg(dm,)=0. If
variations on this system, in which it exhibits or avoids anreached at a finite temperature, this point represents an ideal
ideal glass transition, and extract the corresponding phasglass transition. At lower temperatures, the system remains
diagrams for the liquid state. Motivated by the AG relation- confined to this lowest-energy configuration, with= ¢,
ship, we also calculate an effective, “laboratory” glass tranande=0. In mathematical terms, the behaviordfis given
sition locus and examine the kinetic behavior leading up tdoy
Te. Section |l reviews the energy landscape formalism and . .
the argument against the existence of the glass transition. do(¢ .p) :,3[1 + J ayip(T, ¢ ,p)} for T> T,a(p),

k

The model and its predictions are presented in Sec. Ill, and do do

the generality and implications of these results are discussed

in Sec. V. ¢ = dmin(p) for T<Tic(p), (4)
Il. THE ENERGY LANDSCAPE AND IDEAL GLASSES where the ideal glass transition loclig;(p) is determined
In principle, a system’s energy landscape, given by itd™0M

potential energy function, contains the complete information 9 (Prinp) 9 8,(Tic. brin )

on its thermodynamic and kinetic behavior. In practice, how- 0— =Bl 1+ &— . (5)

ever, the overwhelming complexity of this hypersurface ne- ¢ ¢

cessitates a statistical characterization rather than an exagtom this expression, one can see that if the limiting slope of
enumeration for all except the smallest systg@@,41. It the basin enumeration function &, is infinite, corre-
has been shown that the equilibrium free energy of a systergponding to the left-hand side of E@5), no positive-
relates directly to statistical properties of its landscape. In theemperature ideal glass transition exigtd/e should note
case of a single component, the free energy is givefildy  thata,, is typically weakly ¢-dependent at low tempera-
— « * tures, and no singular dependence is expett€dnse-
Ap = ~keTo(d .p) + (T4 p), @ quently, the existe?wce of anpideal glass trar?sition is tied to
wherea is the per-particle Helmholtz free energy,is the the behavior of the amorphous basin enumeration function
density, kg is Boltzmann’s constant, ang'(T,p), which  at its minimum energy. A Kauzmann point, on the other
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hand, additionally depends on the behavior of the crystatiue to the central limit theorem, although a careful con-
phase. Since the crystal always exists in a unique basigsideration of this line of thought shows that non-Gaussian
and its configurational entropy is therefore rigorously zerocorrections can remain importaf#8]. It is perhaps more
[42], the location of a Kauzmann point requires one toappropriate to think of Eq(8) as an expansion to second
consider the vibrational entropies,=—da,;,/JT, of both  order.

phases in addition to the liquid configurational entropy. Motivated by the form of the Gaussian landscape, one
Due to this involvement of the vibrational entropies, amight consider parameterizing the density dependence of ba-
Kauzmann point can occur completely independent of arsin enumeration functions in the following manréd,43:
ideal glass transition29].

~ Asimple consideration of the local nature of microscopic o(é,p) = o.(p)f[u]  with u= M, (9)
interactions disputes the possibility of an ideal glass transi- &-(p) = Pmin(p)

tion at finite T, namely, by demonstrating that the slopevof . . .
: P whereu is the normalized inherent structure energy, equal to
with respect tog must be infinite aly, [26,43. A rough -1 at ¢, and f is the dimensionless form of the basin

outline of the argument is as follows: consider a large system - cration function varying between zero and one. In
of N particles which is macroscopic in size, and Ietthe Gaussian Iands’cape one simply hfs]=1-u2 ’
Qs(N, P+ AD) be the degeneracy of the second energyThough the assumption of a density-independent function-

level of minima, the ground state being nondegenerate. If W%“ty flu] cannot be rigorously true for all systems, it

replicate the system times, the boundary interactions be- . . . S
tween each copy are to a good degree negligible due to thfﬁévaeﬁa?;si l:)?esfil:]lqm:t?(;ﬁt'g:tl;ta”mg point and simplifies

macroscopic size, and so an energy minimum in the compo . . . .
b 9y P Recently an additional model basin enumeration function

ite system is given by a combination of minima among the, I
individual subsystems. This gives a lower bound g for has been suggested, the so-called logarithmic landgéape

] which is closely related to the “bond-lattice” model of Angell

the overall system: and co-workerg49-51]. Essentially a binomial distribution,
n the logarithmic model envisions a liquid’s inherent structures
Qs(NN,ND iy + MAD) = <m>QIS(Nuq)min+Aq))ma (6)  as being composed of an extensive number of identical el-
ementary structures, each of which exists in either a high or
wherem is the number of subsystems in the second energjow-energy state. It gives rise to the following functional
level. By taking the logarithm of this expression and dividingform for o, expressed in dimensionless form according to
by the total number of particlasN, one obtains the leading Eq. (9):
behavior of the basin enumeration function: 1
o(bmin+ YAd) = = (y In y)/N + additional terms, (7) flul=1- m[(l ~WIn(L -u) + (L +uwin(l +w].

wherey=m/n and Stirling’s approximation has been em- (10
ployed. In the limit of a very large number of replica., at
the thermodynamic limih— <), y is essentially a continuous
variable. Then, the slope of the basin enumeration function
its minimum energy is related to thederivative of Eq.(7)
evaluated ay=0. Because this derivative diverges, the sys-

tem only reaches its ground state at zero temperature, a A o< .
hence no ideal glass transition exists. not necessarily give a quantitatively accurate picture. It has

The logarithmic divergence of the slope of at ¢y, been shown that by “mi_xing” the Io_gar!thmic and_ Gaussian
therefore, should be a feature of any model basin enumerd@ndscapes through a linear combination of thgir], one
tion function which aims to capture the low-temperature be-can always extrapolate high-temperature data in a way that
havior of liquids. However, simpler functional forms are of- Predicts an apparent ideal glass transition, although it is nar-
ten easier to implement, and in this sense, the Gaussid@Wly avoided upon closer approagh3]. The situation for

expression has been particularly well studied in the energg‘_e purely Gaussian and logarithmic cases is depicted in
landscape conteX¢3—47: ig. 1: by extrapolating the temperature dependence of the

configurational entropy in the logarithmic landscape, one
¢-b(p) | g might be tempted to predict an ideal glass transition around
(p) = dmin(p)) |’ ®) reduced temperature 0.25.
b-(p) = Pminlp

whereo.. and ¢,, are the maximum value af and its cor-

responding energy. Equatiof8) gives rise to a Gaussian Ill. MODEL LANDSCAPES
energy distribution of inherent structures, but owing to its
behavior at the minimum energg,,, also possesses an
ideal glass transition. That is, the distribution is actually In order to explore the effects of the Gaussian and loga-
truncated ato,,,, where the configurational entropy van- rithmic landscapes on the full liquid-state phase diagram, the
ishes, and its slope at this point gives the ideal glass trardensity dependence of the parametérs,, &., and o, is
sition locus. The Gaussian form is often thought to emergeequired. Here, we consider the case of soft spheres interact-

The logarithmic landscape gives exactly the leading low-
nergy behavior anticipated in E¢7), and consequently,
oes not possess an ideal glass transition. However, its bi-

nary description is a much simplified portrayal of the way in
ich real inherent structures arise, and hence it alone does

a(¢,p) = Uw(p){l - (

A. Model description
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0.8 —T T T T The remaining ingredient required for the evaluation of
| - Gaussian the free energy in Eq2) is the functional form of the vibra-
0.6 L — |ogarithmic g tional free energy. For this, we employ the Einstein approxi-
' mation, assuming each basin to be parabolic in shape around
e its minimum and characterized by a single frequegarycur-
\b 04 < vature. This approximation is valid at very low tempera-
b ‘,." tures, where the system spends much of its time near minima
"apparent" TIG I with negligible anharmonic contributions. The resulting ex-
02 / T 1 pression ig§24]
LMoLt (T, ) = T IN(OLIT), (14
0.0 0.2 0.4 0.6 0.8 1.0 where the factor of 3 stems from the dimensionality &hd
o ks T/ (- d3) is used as the amorphous equivalent of the Einstein tempera-

ture. We further assume for our calculations thgt (and

FIG. 1. Evolution of the normalized configurational entropy as aheénce also®g) is independent ok. This assumption is
function of dimensionless temperature for the Gaussian and logdncreasingly accurate as one approaches absolute zero, al-
rithmic landscapes. In the Gaussian case, a rigorous ideal glagough simulation results indicate a nonzero, albeit weak
transition exists at reduced temperature 0.5. A modest extrapolatioh dependence at finite temperatures for a number of sub-
might predict an apparent ideal glass transition for the logarithmicstanceg19,46,47. It is nonetheless somewhat comforting
landscape, although it is never realized at finite temperature. Her¢hat an expansion o#,;, to linear order in¢ does not
the vibrational free energy has been assumed to be independent ofiange the results presented below except to scale the
basin depth. temperaturd43].

In summary, the free energy of the SSMF model relies on
ing through an inverse power repulsion with an additionala total of six parameterst, o.., Ymin, ¥--» & and®g. We have
mean-field attraction. At a given density, the potential energyghosen representative values which loosely approximate the
for this soft-sphere mean-fielSMP system is given by behavior of the Lennard-JongkJ) liquid, all of which are

expressed here in reduced units. We etl2 and user..
u@rN,p) = > e(alry)" - Nap, (11) =1.0 based on p_reviqus estimaf&9,55. Referencg56] ha_s _
i<j suggested an Einstein frequency of roughly 2.0 for LJ liquid
inherent structures; therefore, we ug@-=2.0. We note that
wheree ando are the soft-sphere energy and length scales, ®; affects only our vapor-liquid binodal calculations, and
is the repulsive exponent, aradis the attractive mean-field those results are quite insensitive to its precise value. Finally,
term. This system is appropriate to simple liquids whosehe three parameterg,,;,=3.77, y..=4.64, anda=16.5 are
molecules interact in a spherically symmetric fashion, and itghosen by fitting the equation of state predicted by @gto
energy landscape has been investigated in some detaimulation datg24].
[24,25,29,52-54 The important feature of the SSMF model
is that the functional forms in density of all its landscape )
parameters are known explicit[4]: B. Phase behavior

The overall liquid-state phase behavior of the SSMF

o.(p) = 02, (128 model in both the Gaussian and logarithmic landscape ap-
proximations is depicted in Fig. 2. Below we detail the meth-
b.(p) = y.up™3 - ap (12b) ods used for these calculations, but for clarity we first exam-

ine a few thermodynamic paths in the phase diagrams. First,
consider the case when the density is gradually decreased at
Brin(P) = Yminp™> — @p, (129 constant temperature. Starting in the liquid regim@=a0.9
) . and T=0.7, upon decreasing the density one first passes the
vyhere YVinin and'y.oo are constants correspondlng to FOHfIQUfa'binodal line, which would normally mark the onset of phase
tions at the minimum energy and maximum configurationalsgexistence with the appearance of an infinitesimal amount
entropy of the basm enumeration function, respectively. They vapor. If, however, the liquid is maintained in a metastable
general expression foy, which is averaged over the respec- giate, it can be further decompressed until it ultimately be-

tive configurations to producgn, and y.., is given by comes unstable at the liquid spinodal. Just prior to reaching
o this point, however, the inherent structures are found to be
Ny — 3#2 i 13 unstable at their associated spinodal; the effect of vibrational
YY) = €0 173 (13 - - :
N5\ motions around a basin therefore enables the system to with-

stand the greater decompression at the densities between the
Combined with the Gaussian or logarithmic landscape, théwo spinodals. Note that at fixed temperature the density is
expressions in Eq$1239—(120) enable an explicit evaluation higher at the inherent structure spinodal than at the liquid
of the basin enumeration function in both energy and denspinodal, but the tension is smalig@ressure less negativat
sity. the liquid spinodal.
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FIG. 2. Phase behavior in thEp (top) and P-T (bottom) planes of the SSME model with Gaussidaft) and logarithmic(right)
landscapes. The heavy solid line is the liquid spinodal at which the density derivative of the pressure vanishes; the dotted line is the
corresponding spinodal for the inherent-structure contribution to the pressure. The thin solid line is the approximated glass transition locus,
at which §.=0.1(S)max The dashed line is the ideal glass transition, at wt8gh0. The gray line is the liquid binodal, calculated in
conjunction with the ideal gas free energy. The insets detail the region where the spinodal and glass transition lines intersect.

If the liquid is cooled at high enough density, it enters aGaussian spinodal in th&-p plane, which causes this un-
glassy phase; in the Gaussian case, this is an ideal glassual behavior, is due to the existence of the ideal glass
where the configurational entropy is rigorously zero, whereagransition and associated discontinuiti@iscussed beloy
in the logarithmic model, the glassy domain is characterizedHowever, the logarithmic case also possesses nonmonatomic
by a small configurational entropy. The glass transition carspinodal character, although it is much smoother and occurs
also be reached by compressing the liquid at a fixed temperaver less than half the density range of the Gaussian zig-zag
ture to sufficiently high density. At very low temperatures, feature.
however, the system cannot exist in the norflaid) liquid The pressure of the SSMF liquid is given, as usual, by
state and must either be glassy or unstable. At these low?(da/dp)r, with a as per Eq(2). In the landscape formal-
temperatures and upon isotropically stretching the glass, orism, the resulting expression can be further subdivided into
eventually reaches instability directly, at which point the sys-inherent structure and vibrational componef#4,57:
tem presumably begins to sublimate as coexistence between

a gas and glass phase is established. If this decompression  p = 2 dé- + UM for T> Tis,
were to continue, the amount of the vapor would increase at dp dp
the expense of the glass. g
If the liquid is cooled at a lower density, for exampie _ 29%min
=0.75, it instead encounters the inherent-structure and total Pis=p p for T<Te, (159
spinodals upon cooling, in that respective order, and hence
becomes unstable with respect to the vapor before vitrifying. ,da _ N+2
In the Gaussian case aroupd0.78, a particularly interest- vib = a_p = TPKBT (15b)

ing possibility is that the spinodals can also be reached by
heating when the starting point is a much lower temperatur¢lere, u” is the equilibrium value ofi, defined by Eqs(4)
(e.g., T=0.1). The discontinuous zigzag character of theand (9). The total pressure is simplP=P,g+P,,. It is
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v ) T ) ’ is, the loci defined by Eq16) in both the liquid and ideal
glass regimes do not meet in tfep plane, and it would
appear that no true spinodal exists in the temperature range
T=0.14-0.18. At these intermediate temperatures, a cusp
(slope discontinuity preempts the attainment of the mini-
mum. Isothermal decompression of the ideal glass leads to
an unstable liquid without an intervening infinite compress-
ibility condition (dP/dp=0). This peculiarity is a direct con-
sequence of the truncation of the Gaussian distribution at the
minimum amorphous energy. To examine this behavior in
more detail, we consider the Gaussian landscape as a limit-
0.70 0.75 0.80 0.85 ing discontinuous form of a family of continuous basin enu-
P meration functions. In particular, we are motivated by the

FIG. 3. Evolution of the pressure across the ideal glass transil-oc“larlthmlc correction discussed in Sec. |l to examine the

tion, where the isotherm@&)—(e) correspond td'=0.20, 0.18, 0.16, family of basin enumerat".m f_unctlons Wh'.Ch interpolate
0.14, and 0.12, respectively. Alon@), the minimum in pressure smoothly between the logarithmic and Gaussian mojdkis
occurs in the liquid side; likewise faie), the minimum occurs in _
the ideal glass c:egime. As one coolci ?rQa) to (b), the minimum flul= (1 =X fcaussiaht] + Xfiogaritmid U], 17
moves to higher densities and eventually meets the ideal glass trajjhere x is the interpolation variable ranging from zero
sition locus. Then, upon further cooling the pressure minimum(pure|y Gaussianto one (purely logarithmig. Due to the
moves with the ideal glass locus to lower densities until the IimitingfOrm of the logarithmic basin enumeration function, the
temperature afd), where the portion of the isotherm on the glass “mixed” landscape will never possess an ideal glass ,transi-
side develops a min!mum. At Iower_temperatures, then, the mini-tion for a nonzero value af. Therefore, none of the afore-
mum always occurs in the glass regime. mentioneddP/dp slope discontinuities arise for finite and
) ~_acontinuous spinodal can always be extracted. In taking the
straightforwared to see that &, where the system is in its |t x— 0, the pressure-versus-density plots develop a pro-
minimum energy configurationand’ =-1, the two expres- gressively sharper cusp whose slope is rigorously discontinu-
sions in Eq.(159 yield the same pressure. Therefore, thegys atx=0. Simultaneously as proceeds to zero, the liquid
pressure is continuous across the ideal glass transition, apinodal in this family of landscapes gradually approaches
though its derivative is not and in particular, pressure-versusge so-labelled line in Fig. 2, in which it traces the ideal glass
density isotherms exhibit a discontinuous slope at this poinfransition between the liquid and glass regimes. In other
[24,58. o i ] o _words, a portion of the region defined by E46) collapses
The liquid spinodal represents the point of limiting stabil- gnto the ideal glass locus as we take this limit.
ity, beyond which the liquid can no longer exist as a homo- gjnce the inherent-structure pressure is known indepen-
geneous phase. The thermodynamic condition at the spinodgkntly of the total, it is also possible to define an inherent-

liquid

---------- glass T

which we use for its calculation is structure spinodal by replacing with Ps in Eq. (16) [44].
Jp At a given temperature, this spinodal refers to the minimum
<_) =0 (16) inherent-structure pressure and corresponding density. A

ap/t number of simulation studies suggest that g spinodal

S . has an interesting connection to instability, microscopic het-
Trr]'e bo_rdet:] of ;]he ur(;_stable regllcolg_ |n2th?rhSS(I;/IF m_odel ISerogeneity, and ultimate mechanical strength
shown in the phase diagrams of Fg. 2. The aussian ca gf4,46,53,59—6]2 The calculations for the inherent structure
possesses the interesting feature that this line intersects a Binodal are reported in the phase diagrams. Similar to the

becotmes |dent|c?I_tc§) ltZe 6d1e§1_lrﬁ_lais Iltne for .the sbmall Mz ase for the total pressure, a slope discontinuity also exists in
perature range or=0u.14-1.16.1nIS Teature arises because P\s in the Gaussian case, which causes the border between

in this temperature range the s_,lope dl_scontln_wty of 1SO4nherent-structure stability and instability to trace the ideal
therms in the(P,p) plane, associated with the ideal glass

o | i h s his is sh > glass locus for a similagbut distinc) temperature range.
transition, also entails a change of sign. This is shown In", £jg 2 we also show the liquid side of the vapor-liquid
Fig. 3, which displays several isotherms spanning the teMgqeyistence curve. We determine this locus by equating the

perature rangeT=0.14-0.18. Theslope _Qiscontinuity chemical potential in the SSMF model with that of an ideal
propagates to progressively lower densities as the te”bas:

perature is lowered.

The effects of the ideal-glass discontinuities on the spin- a(T,p) + P(T,p)/p = ideal gakT.P), (18)
odal require special attention. While it is true that the thick
spinodal-labelled line in the phase diagrams of Fig. 2. traceshere the left-hand side of this equation corresponds to the
a border between stable and unstable regions, this locus dokguid phase. At a given temperature gives the total pres-
not rigorously adhere to the instability condition in E§6)  sure(from the liquid side and is iterated until this equation
along the ideal glass transition, where instead the densitgonverges. Though our use of the ideal gas model becomes
derivative of the pressure changes sign discontinuously. Thainreliable at high temperatures, it gives at least a qualitative
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description of the liquid equilibrium behavior for the low 1.0 — T T T
temperatures examined here. S S Gaussian ety
%"g 08 logarithmic e H
C. Glass transition locus : ] :
. . . . 0.6
Of the two basin enumeration functions examined, only >
the Gaussian form possesses an ideal glass transition. Using % 0.4
Eq. (5), the T, locus in the SSMF model with a Gaussian ™%
landscape is given by v 02
» 0
T = ¢-(p) = Dmin(p) (19) &~
G 2Kg0, ' 0.0

The ideal glass transition represents the point of structural
arrest in a thermodynamic sense, but it is also desirable to
identify an effective laboratory glass transition at which the g5 4 Fragility plot for the Gaussian and logarithmic land-
characteristic timescales of the supercooled liquid grow tQcapes. in the Adam-Gibbs approximation, the quarii§y) ! has
laboratory magnitudes. The Adam-Gibbs equation offers the jinear relationship with the logarithm of a characteristic molecular
possibility of such a calculation; if one associates a criticakejaxation time. Here this quantity is shown as a function of inverse
timescaler with the glass transitiofil], Tg can be identified  temperature, and Arrhenius behavior corresponds to a straight line
as the thermodynamic locus yielding the corresponding valin the plot. Each of the axes has been normalized to unity at the
ueof the exponent in Eq1). For the current model, we take glass transition.

a simpler approach and locate the boundary in the phase

diagram for which the configurational entropy is 10% of its ;g independent of density for the models considered. In

maximum value, given by Fig. 4, both the Gaussian and logarithmic landscapes ex-
o(&\p) hibit so-called “fragile” behaviof63], deviating notably
——= =f[u']=0.1, (20) from straight-line Arrhenius form. The logarithmic case
O

appears less fragile, which is compatible with the fact that
where ¢* andu” are functions of temperature and density.its basin enumeration function has a smaller absolute
The choice of this line as an effective glass transition is arvalue of the curvature at its peak. However, the fragility
approximation to the AG equation, which instead suggest§f both landscapes can be tuned by varying the glass tran-
that the quantityTsS.(Tg) is constant at fixedr. We have  sition criterion. _ o
also investigated the line of constaF, which intersects the It is important in interpreting Fig. 4 to keep in mind the
constant entropy locus defined by E80) at p=1.0 (results approximations made in this work. Aside from possible de-
not ShOWn; these two curves deviate on average by on|yViati0nS from AG behavior, the aSSUmption that the vibra-
3% in temperature for the Gaussian and 10% for the logational free energy is independent of basin depth breaks down
rithmic case, when viewed as a function of density. Ourat higher temperatures. This effect will certainly modify the
use of the 10% entropy condition for the prediction of thebehavior of the curves, and so the possibility exists that only
glass transition is motivated by convenience, since it doe#1€ predictions towards the very right of Fig. 4 are accurate,
not require thehere unknowh constants in the AG equa- and in this small temperature range, both curves might ap-
tion. Furthermore, we note that changing this requiremenpear linear. Furthermore, we have used a simplified criterion
by a few percent causes 0n|y very minor shifts in thefor the gIaSS transition temperature, inVOlVing-the ConfigL_Jra-
calculated glass loci displayed in Fig. 2. tional entropy alone and leaving a more detailed analysis to
Of particular interest are the behavior of kinetic coeffi- future work. Even the conceptual determination of fragility
cients as the glass transition is approached. Based on th&m landscape models has been the subject of some debate
Adam-Gibbs equatiofl), the logarithm of quantities such as [8,19; we refer the interested reader to the more thorough

diffusivity and viscosity should be proportional (6S)™* discussion in Ref[64] (see p. 11
|n<1> _A (21) IV. DISCUSSION AND CONCLUSIONS
70 TS

One can think of the liquid state as bounded by two lim-
Therefore, a plot of the right hand side of this equation as dts: at fixed temperature, mechanical instability gives rise to a
function of temperature is, within the AG approximation, the low-density extremum and kinetic sluggishness creates a
relevant measure of kinetics in terms of the energy landscapglassy limit at high densit}58]. The energy landscape view-
[8]. This is depicted in Fig. 4, where the axes have beemoint offers a theoretical framework for the treatment of both
normalized to their value at the glass transition temperaturef these constraints. While the spinodal emerges directly
as effectively defined by the 10%ntropy condition. It from the thermodynamics of the metastable liquid, it is the
should also be noted that these results are independent ifentification of the configurational contribution to the en-
the choice of¢min, ¢«, ando.., due to the way this isoch- tropy, in conjunction with the Adam-Gibbs equation, that en-
oric data is normalized; therefore, this measure of fragilityables the landscape’s connection with dynamics. The validity
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of the AG relationship has not yet been fully establishedresult suggests that, regardless of its existence, the ideal ver-
from the landscape-theoretic viewpoint, and so its considersion may be a useful theoretical extrapolation in that its lo-
ation in the present work must be justified by the empiricalcationis not too distant from the onset of very sluggish be-
evidence which has been found for a number of systemBavior. On a different note, however, the ideal glass
[18-21. Nonetheless, the configurational entropy, related tqransition imparts an pronounced “kink” in tAep spinodal.

the number of distinct configurations that a system can exThjs feature arises from the existence of separate liquid and
plore, intuitively seems an important ingredient in kinetic gjass pressure branches which meet with a slope discontinu-
behavior, motivating its study in this context. ity. While this zig-zag appearance of the spinodal seems un-

The phase diagrams we have presented in Fig. 2 utilize go,jitic - smoothed traces of this behavior still exist in the
model energy landscape for the calculation of both the liqui ogarithmic case.

spinodal and effective glass transition. Our model is strictly Finally, we comment on the behavior of the inherent

an approximation to real liquids, representing one of the SMstructure spinodal predicted by the model. In particular, for

plest constructs amenable to energy landscape analysis. OQ| ple systems, it has been found that the minimun® i

might make an analogy with the van der Waals equation "Wnd corresponding density vary little with temperat[44],
that is, the IS spinodal in these systems is driven largely by

that the mean-field attraction is closely related to the low-,

density side of the liquid phas@nd spinodg| while the . volume effects. The same is true of the SSMF model; in

_repulsn/_e forces affect the behawo_r at high den§|t|es. It Seither the Gaussian or logarithmic approximation, the density
interesting to note that hard repulsive forces, which are ap-

roximated by an excluded volume in van der Waals theor and pressure of the IS spinodal vary by only 5-15% over the

Fr)e uire s ecigl treatment in a landscape descriffBan ytemperature range investigated. Since the total and IS spin-

q special t . APe O odals converge at absolute zero, the current work suggests
On first viewing, the qualitative similarity between the

Gaussian and logarithmic predictions is quite remarkable. IFhat the latter, measured at finite temperature, serves as a

these two forms represent realistic approximations for thQOOd approximation to thd=0 spinodal limit[53]. How-

actual soft-sphere basin enumeration function, then its tru§’ ' "o note that this is not likely the case for complex
. SP . . C gystems such as water, in which the density dependence of
behavior might be considered a modest interpolation of th

- ?andscape properties is more intricj#y,59.
two; the effects of mixing the two landscapes has been ex- The present work underscores the importance of the en-

glaifnﬂel?eﬁ/rgﬁ gft\,%gz]'elrtnlag;ggrftgptbgtehreciaetsth$hseargoes Sﬁ_rgy landscape in the understanding of supercooled liquids
bilty exists that the phase diagrams might exhibit eve and their glasses. Through an exact expression for thermo-

n . . . . .
greater similarity if the two forms are allowed differing pa- dynamics and the approximate Adam-Gibbs relationship for

rameter sets. From a kinetic point of view, the Gaussian lan kinetic behavior, key measures of a landscape are straight-

: uep IR -._forwardly related to its bulk thermophysical properties. Still,
scape appears more fragl_le than the_ logarithmic case, W.'th'{?we connection between a system’s molecular interactions
the fimits of the Adam-Gibbs equation, the approxmatlonand the statistical properties of its highly dimensional poten-

gi]t?ct)gvigr:tse?ig;a ;ﬂnicrﬂogr?;ﬁj[ ?Stirzu;tﬁtejurl;ﬁgu?:jai:\rse}gértial energy surface is extremely difficult to elucidate analyti-
' P y cally, with the exception of a very small number of special

the behavior when each of these approximations is relaxed, , : ;
For both versions of the model, the calculated phase di systems like the soft-sphere mean-field model examined

gram indicates the existence of lower temperature and pr Fere. As a result, most landscape investigations are compu-

<ure bounds for the liquid. At temperatures below a rox?_?étional in nature. Much work remains to be done in estab-
quid. P ; PP lishing simple, perhaps approximate, expressions for the ef-

respectivelv. the liauid state is alwavs alassy and the s infects of molecular interactions on landscape properties such
P Y, quia /ays glassy PIN3s basin curvature and shape of the inherent-structure distri-
odal becomes the limit of mechanical stability of the glass.bution [65]

This is in agreement with the findings in RE§58], in which
a similar bound was calcu_lated for a b_mary Lennard-Jones ACKNOWLEDGMENTS
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