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We determine the liquid-state thermodynamics for a model energy landscape corresponding to soft spheres
with a mean-field attraction. We consider two approximations, in which the distribution of potential energy
minima is either Gaussian or binomial, and for each we calculate the liquid spinodal, binodal, and “effective”
glass transition locus. The resulting models provide a unified description of the liquid state across the complete
range from low-temperature glassiness to high-temperature instability with respect to the vapor phase.
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I. INTRODUCTION

The glassy state is ubiquitous in nature; it is also present
in many of the plastics and optical devices that we use and
an important component of new technologies, from pharma-
ceuticals to metallic alloys[1,2]. Nonetheless, the fundamen-
tal physics underlying the glass transition remains an active
area of research[3]. The basic phenomenology of glass for-
mation is familiar: a liquid is supercooled fast enough to
bypass crystallization, and eventually reaches a kinetic
bottleneck with a sudden albeit continuous transition to a
solidlike state[4]. Strictly speaking, this transition is kinetic
in nature, and in practice the empirical glass transition tem-
perature depends on the cooling rate employed. It is there-
fore somewhat surprising that the kinetics of deeply super-
cooled liquids appear to be tightly linked with their
thermodynamics. The relevance of a thermodynamic descrip-
tion of supercooling and vitrification phenomena is a major
open question and is the subject of much current research
[5–13]. The relationship between kinetics and thermodynam-
ics is exemplified by an equation proposed by Adam and
Gibbs almost 40 years ago[14]:

t = t0 expS A

TSc
D , s1d

wheret is a characteristic relaxation time,A andt0 are con-
stants,T is temperature, andSc is the so-called configura-
tional entropy of the system. In the original derivation,Sc
stems from the number of structural arrangements available
to the liquid’s constituent molecules. Though work remains
to be done in placing the Adam-GibbssAGd equation on
firmer theoretical ground, the remarkable performance of Eq.
s1d for a range of supercooled substancesf15g provides em-
pirical support for its use on at least a pragmatic basis.

The energy landscape approach[16,17], which focuses on
the topology of a system’s potential energy function, has
proved useful in investigating the link between kinetics and
thermodynamics in supercooled liquids. Important past simu-
lation work has demonstrated the role of the energy land-

scape in this kinetic-thermodynamic connection[18–23]. In
the present work, we take a theoretical approach and exam-
ine the implications of a model energy landscape on the
phase behavior of the liquid, including the glass transition.
This model has been formulated in previous investigations
[24,25] and employs a system of spherically symmetric par-
ticles, interacting with soft repulsive and mean-field attrac-
tive forces. Using this idealized system, we demonstrate the
connection between the glass transition and macroscopic
thermodynamics in the supercooled region of the phase dia-
gram.

The basis of the energy landscape formalism lies in the
statistical characterization of landscape features[17]. Rigor-
ously, a system’s energy landscape is its multidimensional
potential energy hypersurface as a function of its configura-
tional degrees of freedom. The exponentially numerous local
energy minima in an energy landscape, called inherent struc-
tures(IS), allow an exact partitioning of configuration space
into the basins surrounding them[17]. At a given tempera-
ture and density(or pressure), the system samples a degen-
erate number of inherent structures,VISsT,rd, which make
an entropic contribution to the total free energy, also called
the configurational entropy:Sc;kB ln VIS. Although without
rigorous theoretical justification, one can substitute the
landscape-defined configurational entropy into Eq.(1), and
the resulting predictions for kinetic constants have been
shown in computer simulations to fare quite well[18–21].
Experimentally, on the other hand, the configurational en-
tropy used in the Adam-Gibbs equation is often the excess
entropy, that is to say the supercooled liquid’s entropy minus
that of the stable crystal at the same conditions[15]. The
subtraction removes the entropic contribution due to vibra-
tional modes associated with the liquid’s configurations. The
landscape configurational and excess entropies coincide
when the vibrational modes of the liquid and crystal around
their respective energy minima are equal.

Much attention has been given to the behavior ofSc in
deeply supercooled liquids, with a particular focus on
whether or not the configurational entropy reaches zero at
finite temperature[24,26–30]. In terms of the landscape, the
vanishing ofSc implies that the system has only a single,
low-energy amorphous configuration available to it[26].
This fact, coupled with the corresponding behavior of Eq.(1)
at such a point, suggests complete structural arrest atSc=0,
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and has since come to be called an ideal glass transition.
Contrary to the familiar experimental glass transition, this
hypothetical phenomenon is thermodynamic, occurring at a
well-defined temperatureTIG. The ideal glass transition has
emerged as an interesting theoretical construct in spin glass
[31,32], liquid [33–35], and protein[36,37] models, but ow-
ing to the antecedence of the real, kinetic glass transition, it
has never been experimentally observed.

The ideal glass transition is often associated with the so-
called Kauzmann point,TK, at which the excess entropy
reaches zero[26,38]. Walter Kauzmann[39] observed that
for a number of substances the entropy of the supercooled
liquid decreases quite rapidly upon cooling and, with reason-
able extrapolation, appears to become less than that of the
stable crystal at a finite temperature. If this trend were to
continue to absolute zero, the liquid would attain a negative
entropy, in violation of the third law of thermodynamics.
Experimentally the glass transition intervenes aboveTK,
avoiding this supposed catastrophe[2], but the unsettling im-
plications of the behavior leading up to the Kauzmann point
have led to the(perhaps unfounded) belief that an ideal glass
transition exists nearTK to ensure thermodynamic consis-
tency. It is now understood that Kauzmann points can and do
exist in several substances without an accompanying ideal
glass transition or any violation of the third law[29]. On the
other hand, theoretical considerations argue against the pos-
sibility of vanishing configurational entropy at finite tem-
perature[26], making the ideal glass transition an unrealistic
feature of liquids.

We employ a model energy landscape[24,25] and inves-
tigate both its kinetic and thermodynamic properties. The
model entails representative parameters which approximate
Lennard-Jones-type systems, and gives a realistic description
of simple liquids at low temperatures. We examine two
variations on this system, in which it exhibits or avoids an
ideal glass transition, and extract the corresponding phase
diagrams for the liquid state. Motivated by the AG relation-
ship, we also calculate an effective, “laboratory” glass tran-
sition locus and examine the kinetic behavior leading up to
TG. Section II reviews the energy landscape formalism and
the argument against the existence of the glass transition.
The model and its predictions are presented in Sec. III, and
the generality and implications of these results are discussed
in Sec. IV.

II. THE ENERGY LANDSCAPE AND IDEAL GLASSES

In principle, a system’s energy landscape, given by its
potential energy function, contains the complete information
on its thermodynamic and kinetic behavior. In practice, how-
ever, the overwhelming complexity of this hypersurface ne-
cessitates a statistical characterization rather than an exact
enumeration for all except the smallest systems[40,41]. It
has been shown that the equilibrium free energy of a system
relates directly to statistical properties of its landscape. In the
case of a single component, the free energy is given by[17]

asr,Td = f* − kBTssf* ,rd + avibsT,f* ,rd, s2d

wherea is the per-particle Helmholtz free energy,r is the
density, kB is Boltzmann’s constant, andf*sT,rd, which

minimizes this expression, is the average inherent structure
energy sampled by the system. The functionss and avib
make the rigorous connection with landscape properties,
and are termed the basin enumeration function and vibra-
tional free energy, respectively. In particular, the quantity
Sc;NkBssf* ,rd is the total configurational entropy. For a
system ofN structureless particles, these functions are de-
fined by

dVISsfd = C expfNsgdf, s3ad

e−bNavib = L−dNKE
Gk

e−bfUsr Nd−Ukgdr NL
f

, s3bd

where b=1/kBT, d is dimensionality,L is the thermal de
Broglie wavelength,U is the potential energy, andr N are the
atomic coordinates. Here, the basin enumeration function re-
lates directly to the energy distribution of inherent structures:
dVISsfd gives the number of minima with per-particle en-
ergy f±df /2, andC is a constant which has no bearing on
thermodynamics. For the supercooled liquid and glass, one
must exclude any crystalline configurations from the count-
ing embodied inVIS. Furthermore,avibsT,f ,rd is the aver-
age free energy of basins of depthf; in Eq. (3b), the average
is restricted to minima of energyf and the integral for a
particular minimumk, of energyUk, is performed over its
basin’s configuration spaceGk.

Careful attention must be paid to the determination off* ,
the equilibrium inherent structure energy[24]. The particular
issue at hand is whether or not the system reaches its mini-
mum amorphous energy,fminsrd, at finite temperature. Pre-
sumably only a single amorphous configuration is available
at this energy, which implies a simultaneous vanishing of the
configurational entropy; in other words,ssfmind=0. If
reached at a finite temperature, this point represents an ideal
glass transition. At lower temperatures, the system remains
confined to this lowest-energy configuration, withf* =fmin
ands=0. In mathematical terms, the behavior off* is given
by

] ssf* ,rd
] f

= bF1 +
] avibsT,f* ,rd

] f
G for T . TIGsrd,

f* = fminsrd for T ø TIG srd, s4d

where the ideal glass transition locusTIGsrd is determined
from

] ssfmin,rd
] f

= bIGF1 +
] avibsTIG,fmin,rd

] f
G . s5d

From this expression, one can see that if the limiting slope of
the basin enumeration function atfmin is infinite, corre-
sponding to the left-hand side of Eq.s5d, no positive-
temperature ideal glass transition exists.sWe should note
that avib is typically weaklyf-dependent at low tempera-
tures, and no singular dependence is expected.d Conse-
quently, the existence of an ideal glass transition is tied to
the behavior of the amorphous basin enumeration function
at its minimum energy. A Kauzmann point, on the other
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hand, additionally depends on the behavior of the crystal
phase. Since the crystal always exists in a unique basin
and its configurational entropy is therefore rigorously zero
f42g, the location of a Kauzmann point requires one to
consider the vibrational entropies,sv;−]avib/]T, of both
phases in addition to the liquid configurational entropy.
Due to this involvement of the vibrational entropies, a
Kauzmann point can occur completely independent of an
ideal glass transitionf29g.

A simple consideration of the local nature of microscopic
interactions disputes the possibility of an ideal glass transi-
tion at finiteT, namely, by demonstrating that the slope ofs
with respect tof must be infinite atfmin [26,43]. A rough
outline of the argument is as follows: consider a large system
of N particles which is macroscopic in size, and let
VISsN,Fmin+DFd be the degeneracy of the second energy
level of minima, the ground state being nondegenerate. If we
replicate the systemn times, the boundary interactions be-
tween each copy are to a good degree negligible due to their
macroscopic size, and so an energy minimum in the compos-
ite system is given by a combination of minima among the
individual subsystems. This gives a lower bound forVIS for
the overall system:

VISsnN,nFmin + mDFd ù Sn

m
DVISsN,Fmin + DFdm, s6d

wherem is the number of subsystems in the second energy
level. By taking the logarithm of this expression and dividing
by the total number of particlesnN, one obtains the leading
behavior of the basin enumeration function:

ssfmin + yDfd ù − sy ln yd/N + additional terms, s7d

where y;m/n and Stirling’s approximation has been em-
ployed. In the limit of a very large number of replicassi.e., at
the thermodynamic limitn→`d, y is essentially a continuous
variable. Then, the slope of the basin enumeration function at
its minimum energy is related to they derivative of Eq.s7d
evaluated aty=0. Because this derivative diverges, the sys-
tem only reaches its ground state at zero temperature, and
hence no ideal glass transition exists.

The logarithmic divergence of the slope ofs at fmin,
therefore, should be a feature of any model basin enumera-
tion function which aims to capture the low-temperature be-
havior of liquids. However, simpler functional forms are of-
ten easier to implement, and in this sense, the Gaussian
expression has been particularly well studied in the energy
landscape context[43–47]:

ssf,rd = s`srdF1 −S f − f`srd
f`srd − fminsrdD

2G , s8d

wheres` and f` are the maximum value ofs and its cor-
responding energy. Equations8d gives rise to a Gaussian
energy distribution of inherent structures, but owing to its
behavior at the minimum energyfmin, also possesses an
ideal glass transition. That is, the distribution is actually
truncated atfmin, where the configurational entropy van-
ishes, and its slope at this point gives the ideal glass tran-
sition locus. The Gaussian form is often thought to emerge

due to the central limit theorem, although a careful con-
sideration of this line of thought shows that non-Gaussian
corrections can remain importantf48g. It is perhaps more
appropriate to think of Eq.s8d as an expansion to second
order.

Motivated by the form of the Gaussian landscape, one
might consider parameterizing the density dependence of ba-
sin enumeration functions in the following manner[24,43]:

ssf,rd = s`srdffug with u ;
f − f`srd

f`srd − fminsrd
, s9d

whereu is the normalized inherent structure energy, equal to
−1 at fmin, and f is the dimensionless form of the basin
enumeration function, varying between zero and one. In
the Gaussian landscape, one simply hasffug=1−u2.
Though the assumption of a density-independent function-
ality ffug cannot be rigorously true for all systems, it
serves as a useful theoretical starting point and simplifies
the analysis of simulation data.

Recently an additional model basin enumeration function
has been suggested, the so-called logarithmic landscape[43],
which is closely related to the “bond-lattice” model of Angell
and co-workers[49–51]. Essentially a binomial distribution,
the logarithmic model envisions a liquid’s inherent structures
as being composed of an extensive number of identical el-
ementary structures, each of which exists in either a high or
low-energy state. It gives rise to the following functional
form for s, expressed in dimensionless form according to
Eq. (9):

ffug = 1 −
1

lns4d
fs1 − udlns1 − ud + s1 + udlns1 + udg.

s10d

The logarithmic landscape gives exactly the leading low-
energy behavior anticipated in Eq.(7), and consequently,
does not possess an ideal glass transition. However, its bi-
nary description is a much simplified portrayal of the way in
which real inherent structures arise, and hence it alone does
not necessarily give a quantitatively accurate picture. It has
been shown that by “mixing” the logarithmic and Gaussian
landscapes through a linear combination of theirffug, one
can always extrapolate high-temperature data in a way that
predicts an apparent ideal glass transition, although it is nar-
rowly avoided upon closer approach[43]. The situation for
the purely Gaussian and logarithmic cases is depicted in
Fig. 1: by extrapolating the temperature dependence of the
configurational entropy in the logarithmic landscape, one
might be tempted to predict an ideal glass transition around
reduced temperature 0.25.

III. MODEL LANDSCAPES

A. Model description

In order to explore the effects of the Gaussian and loga-
rithmic landscapes on the full liquid-state phase diagram, the
density dependence of the parametersfmin, f`, and s` is
required. Here, we consider the case of soft spheres interact-
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ing through an inverse power repulsion with an additional
mean-field attraction. At a given density, the potential energy
for this soft-sphere mean-field(SSMF) system is given by

Usr N,rd = o
i, j

ess/r ijdn − Nar, s11d

wheree ands are the soft-sphere energy and length scales,n
is the repulsive exponent, anda is the attractive mean-field
term. This system is appropriate to simple liquids whose
molecules interact in a spherically symmetric fashion, and its
energy landscape has been investigated in some detail
f24,25,29,52–54g. The important feature of the SSMF model
is that the functional forms in density of all its landscape
parameters are known explicitlyf24g:

s`srd = s`, s12ad

f`srd = g`rn/3 − ar, s12bd

fminsrd = gminr
n/3 − ar, s12cd

wheregmin andg` are constants corresponding to configura-
tions at the minimum energy and maximum configurational
entropy of the basin enumeration function, respectively. The
general expression forg, which is averaged over the respec-
tive configurations to producegmin andg`, is given by

gsr Nd ; es3 1

N1+n/3o
i, j

S r ij

V1/3D−n

. s13d

Combined with the Gaussian or logarithmic landscape, the
expressions in Eqs.s12ad–s12cd enable an explicit evaluation
of the basin enumeration function in both energy and den-
sity.

The remaining ingredient required for the evaluation of
the free energy in Eq.(2) is the functional form of the vibra-
tional free energy. For this, we employ the Einstein approxi-
mation, assuming each basin to be parabolic in shape around
its minimum and characterized by a single frequency(or cur-
vature). This approximation is valid at very low tempera-
tures, where the system spends much of its time near minima
with negligible anharmonic contributions. The resulting ex-
pression is[24]

avibsT,f,rd = 3kBT lnsQE/Td, s14d

where the factor of 3 stems from the dimensionality andQE
is used as the amorphous equivalent of the Einstein tempera-
ture. We further assume for our calculations thatavib sand
hence alsoQEd is independent off. This assumption is
increasingly accurate as one approaches absolute zero, al-
though simulation results indicate a nonzero, albeit weak
f dependence at finite temperatures for a number of sub-
stancesf19,46,47g. It is nonetheless somewhat comforting
that an expansion ofavib to linear order inf does not
change the results presented below except to scale the
temperaturef43g.

In summary, the free energy of the SSMF model relies on
a total of six parameters:n, s`, gmin, g`, a, andQE. We have
chosen representative values which loosely approximate the
behavior of the Lennard-Jones(LJ) liquid, all of which are
expressed here in reduced units. We setn=12 and uses`

=1.0 based on previous estimates[19,55]. Reference[56] has
suggested an Einstein frequency of roughly 2.0 for LJ liquid
inherent structures; therefore, we usekQE=2.0. We note that
QE affects only our vapor-liquid binodal calculations, and
those results are quite insensitive to its precise value. Finally,
the three parametersgmin=3.77, g`=4.64, anda=16.5 are
chosen by fitting the equation of state predicted by Eq.(2) to
simulation data[24].

B. Phase behavior

The overall liquid-state phase behavior of the SSMF
model in both the Gaussian and logarithmic landscape ap-
proximations is depicted in Fig. 2. Below we detail the meth-
ods used for these calculations, but for clarity we first exam-
ine a few thermodynamic paths in the phase diagrams. First,
consider the case when the density is gradually decreased at
constant temperature. Starting in the liquid regime atr=0.9
andT=0.7, upon decreasing the density one first passes the
binodal line, which would normally mark the onset of phase
coexistence with the appearance of an infinitesimal amount
of vapor. If, however, the liquid is maintained in a metastable
state, it can be further decompressed until it ultimately be-
comes unstable at the liquid spinodal. Just prior to reaching
this point, however, the inherent structures are found to be
unstable at their associated spinodal; the effect of vibrational
motions around a basin therefore enables the system to with-
stand the greater decompression at the densities between the
two spinodals. Note that at fixed temperature the density is
higher at the inherent structure spinodal than at the liquid
spinodal, but the tension is smaller(pressure less negative) at
the liquid spinodal.

FIG. 1. Evolution of the normalized configurational entropy as a
function of dimensionless temperature for the Gaussian and loga-
rithmic landscapes. In the Gaussian case, a rigorous ideal glass
transition exists at reduced temperature 0.5. A modest extrapolation
might predict an apparent ideal glass transition for the logarithmic
landscape, although it is never realized at finite temperature. Here,
the vibrational free energy has been assumed to be independent of
basin depth.
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If the liquid is cooled at high enough density, it enters a
glassy phase; in the Gaussian case, this is an ideal glass
where the configurational entropy is rigorously zero, whereas
in the logarithmic model, the glassy domain is characterized
by a small configurational entropy. The glass transition can
also be reached by compressing the liquid at a fixed tempera-
ture to sufficiently high density. At very low temperatures,
however, the system cannot exist in the normal(fluid) liquid
state and must either be glassy or unstable. At these low
temperatures and upon isotropically stretching the glass, one
eventually reaches instability directly, at which point the sys-
tem presumably begins to sublimate as coexistence between
a gas and glass phase is established. If this decompression
were to continue, the amount of the vapor would increase at
the expense of the glass.

If the liquid is cooled at a lower density, for exampler
=0.75, it instead encounters the inherent-structure and total
spinodals upon cooling, in that respective order, and hence
becomes unstable with respect to the vapor before vitrifying.
In the Gaussian case aroundr=0.78, a particularly interest-
ing possibility is that the spinodals can also be reached by
heating when the starting point is a much lower temperature
(e.g., T=0.1). The discontinuous zigzag character of the

Gaussian spinodal in theT-r plane, which causes this un-
usual behavior, is due to the existence of the ideal glass
transition and associated discontinuities(discussed below).
However, the logarithmic case also possesses nonmonatomic
spinodal character, although it is much smoother and occurs
over less than half the density range of the Gaussian zig-zag
feature.

The pressure of the SSMF liquid is given, as usual, by
r2s]a/]rdT, with a as per Eq.(2). In the landscape formal-
ism, the resulting expression can be further subdivided into
inherent structure and vibrational components[24,57]:

PIS = r2Fdf`

dr
+ u* dsf` − fmind

dr
G for T . TIG,

PIS = r2dfmin

dr
for T ø TIG , s15ad

Pvib = r2] avib

] r
=

n + 2

2
rkBT. s15bd

Here, u* is the equilibrium value ofu, defined by Eqs.(4)
and (9). The total pressure is simplyP=PIS+Pvib. It is

FIG. 2. Phase behavior in theT-r (top) and P-T (bottom) planes of the SSME model with Gaussian(left) and logarithmic(right)
landscapes. The heavy solid line is the liquid spinodal at which the density derivative of the pressure vanishes; the dotted line is the
corresponding spinodal for the inherent-structure contribution to the pressure. The thin solid line is the approximated glass transition locus,
at which Sc=0.1sScdmax. The dashed line is the ideal glass transition, at whichSc=0. The gray line is the liquid binodal, calculated in
conjunction with the ideal gas free energy. The insets detail the region where the spinodal and glass transition lines intersect.
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straightforwared to see that atTIG, where the system is in its
minimum energy configurationandu* =−1, the two expres-
sions in Eq.(15a) yield the same pressure. Therefore, the
pressure is continuous across the ideal glass transition, al-
though its derivative is not and in particular, pressure-versus-
density isotherms exhibit a discontinuous slope at this point
[24,58].

The liquid spinodal represents the point of limiting stabil-
ity, beyond which the liquid can no longer exist as a homo-
geneous phase. The thermodynamic condition at the spinodal
which we use for its calculation is

S ] P

] r
D

T

= 0. s16d

The border of the unstable region in the SSMF model is
shown in the phase diagrams of Fig. 2. The Gaussian case
possesses the interesting feature that this line intersects and
becomes identical to the ideal glass line for the small tem-
perature range ofT=0.14–0.18.This feature arises because
in this temperature range the slope discontinuity of iso-
therms in thesP,rd plane, associated with the ideal glass
transition, also entails a change of sign. This is shown in
Fig. 3, which displays several isotherms spanning the tem-
perature rangeT=0.14–0.18. Theslope discontinuity
propagates to progressively lower densities as the tem-
perature is lowered.

The effects of the ideal-glass discontinuities on the spin-
odal require special attention. While it is true that the thick
spinodal-labelled line in the phase diagrams of Fig. 2. traces
a border between stable and unstable regions, this locus does
not rigorously adhere to the instability condition in Eq.(16)
along the ideal glass transition, where instead the density
derivative of the pressure changes sign discontinuously. That

is, the loci defined by Eq.(16) in both the liquid and ideal
glass regimes do not meet in theT-r plane, and it would
appear that no true spinodal exists in the temperature range
T=0.14–0.18. At these intermediate temperatures, a cusp
(slope discontinuity) preempts the attainment of the mini-
mum. Isothermal decompression of the ideal glass leads to
an unstable liquid without an intervening infinite compress-
ibility condition s]P/]r=0d. This peculiarity is a direct con-
sequence of the truncation of the Gaussian distribution at the
minimum amorphous energy. To examine this behavior in
more detail, we consider the Gaussian landscape as a limit-
ing discontinuous form of a family of continuous basin enu-
meration functions. In particular, we are motivated by the
logarithmic correction discussed in Sec. II to examine the
family of basin enumeration functions which interpolate
smoothly between the logarithmic and Gaussian models[43]:

ffug = s1 − xdfGaussianfug + xflogarithmicfug, s17d

where x is the interpolation variable ranging from zero
spurely Gaussiand to one spurely logarithmicd. Due to the
form of the logarithmic basin enumeration function, the
“mixed” landscape will never possess an ideal glass transi-
tion for a nonzero value ofx. Therefore, none of the afore-
mentioneddP/dr slope discontinuities arise for finitex, and
a continuous spinodal can always be extracted. In taking the
limit x→0, the pressure-versus-density plots develop a pro-
gressively sharper cusp whose slope is rigorously discontinu-
ous atx=0. Simultaneously asx proceeds to zero, the liquid
spinodal in this family of landscapes gradually approaches
the so-labelled line in Fig. 2, in which it traces the ideal glass
transition between the liquid and glass regimes. In other
words, a portion of the region defined by Eq.s16d collapses
onto the ideal glass locus as we take this limit.

Since the inherent-structure pressure is known indepen-
dently of the total, it is also possible to define an inherent-
structure spinodal by replacingP with PIS in Eq. (16) [44].
At a given temperature, this spinodal refers to the minimum
inherent-structure pressure and corresponding density. A
number of simulation studies suggest that thePIS spinodal
has an interesting connection to instability, microscopic het-
erogeneity, and ultimate mechanical strength
[44,46,53,59–62]. The calculations for the inherent structure
spinodal are reported in the phase diagrams. Similar to the
case for the total pressure, a slope discontinuity also exists in
PIS in the Gaussian case, which causes the border between
inherent-structure stability and instability to trace the ideal
glass locus for a similar(but distinct) temperature range.

In Fig. 2, we also show the liquid side of the vapor-liquid
coexistence curve. We determine this locus by equating the
chemical potential in the SSMF model with that of an ideal
gas:

asT,rd + PsT,rd/r = mideal gassT,Pd, s18d

where the left-hand side of this equation corresponds to the
liquid phase. At a given temperature,r gives the total pres-
suresfrom the liquid sided and is iterated until this equation
converges. Though our use of the ideal gas model becomes
unreliable at high temperatures, it gives at least a qualitative

FIG. 3. Evolution of the pressure across the ideal glass transi-
tion, where the isotherms(a)–(e) correspond toT=0.20, 0.18, 0.16,
0.14, and 0.12, respectively. Along(a), the minimum in pressure
occurs in the liquid side; likewise for(e), the minimum occurs in
the ideal glass regime. As one cools from(a) to (b), the minimum
moves to higher densities and eventually meets the ideal glass tran-
sition locus. Then, upon further cooling the pressure minimum
moves with the ideal glass locus to lower densities until the limiting
temperature at(d), where the portion of the isotherm on the glass
side develops a minimum. At lower temperatures, then, the mini-
mum always occurs in the glass regime.
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description of the liquid equilibrium behavior for the low
temperatures examined here.

C. Glass transition locus

Of the two basin enumeration functions examined, only
the Gaussian form possesses an ideal glass transition. Using
Eq. (5), the TIG locus in the SSMF model with a Gaussian
landscape is given by

TIG =
f`srd − fminsrd

2kBs`

. s19d

The ideal glass transition represents the point of structural
arrest in a thermodynamic sense, but it is also desirable to
identify an effective laboratory glass transition at which the
characteristic timescales of the supercooled liquid grow to
laboratory magnitudes. The Adam-Gibbs equation offers the
possibility of such a calculation; if one associates a critical
timescalet with the glass transitionf1g, TG can be identified
as the thermodynamic locus yielding the corresponding val-
ueof the exponent in Eq.s1d. For the current model, we take
a simpler approach and locate the boundary in the phase
diagram for which the configurational entropy is 10% of its
maximum value, given by

ssf* ,rd
s`

= ffu*g = 0.1, s20d

wheref* and u* are functions of temperature and density.
The choice of this line as an effective glass transition is an
approximation to the AG equation, which instead suggests
that the quantityTGScsTGd is constant at fixedt. We have
also investigated the line of constantTSc which intersects the
constant entropy locus defined by Eq.s20d at r=1.0 sresults
not shownd; these two curves deviate on average by only
3% in temperature for the Gaussian and 10% for the loga-
rithmic case, when viewed as a function of density. Our
use of the 10% entropy condition for the prediction of the
glass transition is motivated by convenience, since it does
not require theshere unknownd constants in the AG equa-
tion. Furthermore, we note that changing this requirement
by a few percent causes only very minor shifts in the
calculated glass loci displayed in Fig. 2.

Of particular interest are the behavior of kinetic coeffi-
cients as the glass transition is approached. Based on the
Adam-Gibbs equation(1), the logarithm of quantities such as
diffusivity and viscosity should be proportional tosTScd−1:

lnS t

t0
D =

A

TSc
s21d

Therefore, a plot of the right hand side of this equation as a
function of temperature is, within the AG approximation, the
relevant measure of kinetics in terms of the energy landscape
f8g. This is depicted in Fig. 4, where the axes have been
normalized to their value at the glass transition temperature
as effectively defined by the 10%entropy condition. It
should also be noted that these results are independent of
the choice offmin, f`, ands`, due to the way this isoch-
oric data is normalized; therefore, this measure of fragility

is independent of density for the models considered. In
Fig. 4, both the Gaussian and logarithmic landscapes ex-
hibit so-called “fragile” behaviorf63g, deviating notably
from straight-line Arrhenius form. The logarithmic case
appears less fragile, which is compatible with the fact that
its basin enumeration function has a smaller absolute
value of the curvature at its peak. However, the fragility
of both landscapes can be tuned by varying the glass tran-
sition criterion.

It is important in interpreting Fig. 4 to keep in mind the
approximations made in this work. Aside from possible de-
viations from AG behavior, the assumption that the vibra-
tional free energy is independent of basin depth breaks down
at higher temperatures. This effect will certainly modify the
behavior of the curves, and so the possibility exists that only
the predictions towards the very right of Fig. 4 are accurate,
and in this small temperature range, both curves might ap-
pear linear. Furthermore, we have used a simplified criterion
for the glass transition temperature, involving the configura-
tional entropy alone and leaving a more detailed analysis to
future work. Even the conceptual determination of fragility
from landscape models has been the subject of some debate
[8,19]; we refer the interested reader to the more thorough
discussion in Ref.[64] (see p. 11).

IV. DISCUSSION AND CONCLUSIONS

One can think of the liquid state as bounded by two lim-
its: at fixed temperature, mechanical instability gives rise to a
low-density extremum and kinetic sluggishness creates a
glassy limit at high density[58]. The energy landscape view-
point offers a theoretical framework for the treatment of both
of these constraints. While the spinodal emerges directly
from the thermodynamics of the metastable liquid, it is the
identification of the configurational contribution to the en-
tropy, in conjunction with the Adam-Gibbs equation, that en-
ables the landscape’s connection with dynamics. The validity

FIG. 4. Fragility plot for the Gaussian and logarithmic land-
scapes. In the Adam-Gibbs approximation, the quantitysTScd−1 has
a linear relationship with the logarithm of a characteristic molecular
relaxation time. Here this quantity is shown as a function of inverse
temperature, and Arrhenius behavior corresponds to a straight line
in the plot. Each of the axes has been normalized to unity at the
glass transition.
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of the AG relationship has not yet been fully established
from the landscape-theoretic viewpoint, and so its consider-
ation in the present work must be justified by the empirical
evidence which has been found for a number of systems
[18–21]. Nonetheless, the configurational entropy, related to
the number of distinct configurations that a system can ex-
plore, intuitively seems an important ingredient in kinetic
behavior, motivating its study in this context.

The phase diagrams we have presented in Fig. 2 utilize a
model energy landscape for the calculation of both the liquid
spinodal and effective glass transition. Our model is strictly
an approximation to real liquids, representing one of the sim-
plest constructs amenable to energy landscape analysis. One
might make an analogy with the van der Waals equation in
that the mean-field attraction is closely related to the low-
density side of the liquid phase(and spinodal), while the
repulsive forces affect the behavior at high densities. It is
interesting to note that hard repulsive forces, which are ap-
proximated by an excluded volume in van der Waals theory,
require special treatment in a landscape description[52].

On first viewing, the qualitative similarity between the
Gaussian and logarithmic predictions is quite remarkable. If
these two forms represent realistic approximations for the
actual soft-sphere basin enumeration function, then its true
behavior might be considered a modest interpolation of the
two; the effects of mixing the two landscapes has been ex-
plored in some detail[43]. It is important here that the same
parameter values were employed for both cases. The possi-
bility exists that the phase diagrams might exhibit even
greater similarity if the two forms are allowed differing pa-
rameter sets. From a kinetic point of view, the Gaussian land-
scape appears more fragile than the logarithmic case, within
the limits of the Adam-Gibbs equation, the approximation
that avib is not a function off, and our heuristic glass tran-
sition criterion. An important future study should consider
the behavior when each of these approximations is relaxed.

For both versions of the model, the calculated phase dia-
gram indicates the existence of lower temperature and pres-
sure bounds for the liquid. At temperatures below approxi-
mately 0.18 and 0.09 for the Gaussian and logarithmic cases,
respectively, the liquid state is always glassy and the spin-
odal becomes the limit of mechanical stability of the glass.
This is in agreement with the findings in Ref.[58], in which
a similar bound was calculated for a binary Lennard-Jones
glass former. The intersection of the spinodal and glass tran-
sition loci therefore appears to define an important point in
the phase diagram of supercooled liquids. The present mean-
field model does not take into account the kinetic aspects of
instability, which would also suggest an intriguing conver-
gence of slow, glassy dynamics and rapid nucleation at this
point. This matter will be the subject of future research.

In the Gaussian landscape, the ideal glass transition dif-
fers almost negligibly from its effectiveTG counterpart. This

result suggests that, regardless of its existence, the ideal ver-
sion may be a useful theoretical extrapolation in that its lo-
cationis not too distant from the onset of very sluggish be-
havior. On a different note, however, the ideal glass
transition imparts an pronounced “kink” in theT-r spinodal.
This feature arises from the existence of separate liquid and
glass pressure branches which meet with a slope discontinu-
ity. While this zig-zag appearance of the spinodal seems un-
realistic, smoothed traces of this behavior still exist in the
logarithmic case.

Finally, we comment on the behavior of the inherent
structure spinodal predicted by the model. In particular, for
simple systems, it has been found that the minimum inPIS
and corresponding density vary little with temperature[44],
that is, the IS spinodal in these systems is driven largely by
volume effects. The same is true of the SSMF model; in
either the Gaussian or logarithmic approximation, the density
and pressure of the IS spinodal vary by only 5–15% over the
temperature range investigated. Since the total and IS spin-
odals converge at absolute zero, the current work suggests
that the latter, measured at finite temperature, serves as a
good approximation to theT=0 spinodal limit [53]. How-
ever, we note that this is not likely the case for complex
systems such as water, in which the density dependence of
landscape properties is more intricate[47,59].

The present work underscores the importance of the en-
ergy landscape in the understanding of supercooled liquids
and their glasses. Through an exact expression for thermo-
dynamics and the approximate Adam-Gibbs relationship for
kinetic behavior, key measures of a landscape are straight-
forwardly related to its bulk thermophysical properties. Still,
the connection between a system’s molecular interactions
and the statistical properties of its highly dimensional poten-
tial energy surface is extremely difficult to elucidate analyti-
cally, with the exception of a very small number of special
systems like the soft-sphere mean-field model examined
here. As a result, most landscape investigations are compu-
tational in nature. Much work remains to be done in estab-
lishing simple, perhaps approximate, expressions for the ef-
fects of molecular interactions on landscape properties such
as basin curvature and shape of the inherent-structure distri-
bution [65].
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